Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Surg Oncol ; 21(1): 194, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391802

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most heterogenous and aggressive subtype of breast cancer. Chemotherapy remains the standard treatment option for patients with TNBC owing to the unavailability of acceptable targets and biomarkers in clinical practice. Novel biomarkers and targets for patient stratification and treatment of TNBC are urgently needed. It has been reported that the overexpression of DNA damage-inducible transcript 4 gene (DDIT4) is associated with resistance to neoadjuvant chemotherapy and poor prognosis in patients with TNBC. In this study, we aimed to identify novel biomarkers and therapeutic targets using RNA sequencing (RNA-seq) and data mining using data from public databases. METHODS: RNA sequencing (RNA-Seq) was performed to detect the different gene expression patterns in the human TNBC cell line HS578T treated with docetaxel or doxorubicin. Sequencing data were further analyzed by the R package "edgeR" and "clusterProfiler" to identify the profile of differentially expressed genes (DEGs) and annotate gene functions. The prognostic and predictive value of DDIT4 expression in patients with TNBC was further validated by published online data resources, including TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics, and GeneMANIA and GSCALite were used to investigate the functional networks and hub genes related to DDIT4, respectively. RESULTS: Through the integrative analyses of RNA-Seq data and public datasets, we observed the overexpression of DDIT4 in TNBC tissues and found that patients with DDIT4 overexpression showed poor survival outcomes. Notably, immune infiltration analysis showed that the levels of DDIT4 expression correlated negatively with the abundance of tumor-infiltrating immune cells and immune biomarker expression, but correlated positively with immune checkpoint molecules. Furthermore, DDIT4 and its hub genes (ADM, ENO1, PLOD1, and CEBPB) involved in the activation of apoptosis, cell cycle, and EMT pathways. Eventually, we found ADM, ENO1, PLOD1, and CEBPB showed poor overall survival in BC patients. CONCLUSION: In this study, we found that DDIT4 expression is associated with the progression, therapeutic efficacy, and immune microenvironment of patients with TNBC, and DDIT4 would be as a potential prognostic biomarker and therapeutic target. These findings will help to identify potential molecular targets and improve therapeutic strategies against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Prognóstico , Apoptose , Ciclo Celular , Imunoterapia , Microambiente Tumoral , Fatores de Transcrição/genética
2.
J Oncol ; 2022: 9060243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898926

RESUMO

Immune checkpoint blockade (ICB) has been explored as a therapeutic strategy to recover the antitumor immune activities against endometrial cancer (EC) escaping from immune surveillance. Increasing evidence has indicated that microsatellite instability (MSI) is a promising biomarker to stratify patients for the ICB therapy. However, even in patients with MSI-High (MSI-H) endometrial cancers, PD-L1 inhibitors, avelumab, and durvalumab have shown only 27% of response rates. Therefore, there is an urgent need to discover new biomarkers for a predictive response to ICB therapy. In this study, we demonstrated that the immune cytolytic activity (CYT) index was significantly correlated with the development and response to immunotherapy in EC. The data showed that higher CYT was significantly associated with better clinical outcome, more antitumor infiltrating immune cells, fewer somatic copy number alterations, but a higher TMB (Tumor mutational burden) status. Furthermore, CYT-high EC was notably relevant to the high expression of various immune checkpoint molecules and showed more effective responses to ICB treatment. Taken together, this study provided new insights into the connection between diverse genetic events and the immune microenvironment in EC and indicated that the CYT status might be a promising biomarker to stratify patients with EC for ICB therapy.

3.
Int J Gen Med ; 15: 4037-4052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444456

RESUMO

Introduction: Amplification of the 11q13.3 locus has been observed in various tumors. This study sought to determine the correlation of gene amplification at the 11q13.3 locus with the immune status and survival of breast cancer. Methods: Amplification of the 11q13.3 locus was characterized by analyzing a publicly available database from the cBioPortal platform (TCGA). The correlation of amplified genes with immune cell infiltration in breast cancer was further analyzed using the TIMER2.0 platform. Immunohistochemical staining was used to determine the expression levels of Cyclin D1 (CCND1), Fas-associated death domain (FADD) and P53 in 156 clinical breast cancer samples. Results: This study revealed that amplification of the 11q13.3 amplicon in breast cancer is likely more frequently detected in luminal B breast cancer. Moreover, high expression or amplification of CCND1, fibroblast growth factor 3 (FGF3), fibroblast growth factor 4 (FGF4), fibroblast growth factor 19 (FGF19) and FADD was inversely correlated with the abundance of CD4+ T cells and dendritic cell infiltration in breast cancer (P < 0.05). Data analysis also demonstrated that high expression of CCND1, FGF4 and FADD mRNA levels was closely correlated with shorter recurrence-free survival (RFS) in patients with breast cancer (P < 0.05). The results of immunohistochemical staining from clinical samples further confirmed that high expression of CCND1 and FADD was frequently detected in luminal B and high-grade breast cancer with shorter metastasis-free survival times (P < 0.05). Conclusion: This study demonstrated that coamplification of genes located on the 11q13.3 amplicon is frequently detected in luminal B subtype breast cancer and is closely associated with worse survival in patients with breast cancer. Moreover, coamplification of the CCND1-FGF locus might decrease antitumor immune activity in breast cancer, indicating that coamplification of the 11q13.3 amplicon is likely to be a key determinant of therapeutic resistance and accelerate the aggressive evolution of breast cancer.

4.
Front Oncol ; 11: 763035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804966

RESUMO

INTRODUCTION: Resistance to second-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), afatinib, is the most significant challenge in the clinical management of non-small cell lung cancer (NSCLC), and the underlying mechanisms remain unclear. METHODS: Genomic signatures that may confer afatinib resistance in NSCLC were identified via data mining of public databases and integrative bioinformatic analyses. Furthermore, acquired afatinib-resistant lung adenocarcinoma cell lines (HCC827 AR) were established by long-term exposure under afatinib in vitro for stepwise escalation. The expression of baculovirus IAP repeat protein 5 (BIRC5) was detected by western blot, and cellular viability of HCC827 AR was determined by CCK8. RESULTS: Through integrative bioinformatic analyses of public datasets, overexpression of baculovirus IAP repeat protein 5 (BIRC5) was identified in both afatinib-resistant NSCLC cells and tissues, and BIRC5 overexpression was positively correlated with lymph node metastasis as well as pathological stage in NSCLC. Furthermore, NSCLC patients with BIRC5 overexpression showed poor survival outcomes. Immune infiltration analysis suggested that BIRC5 expression was significantly inversely correlated with tumor-infiltrating cell numbers and immune biomarker expression in NSCLC. The functions of genes co-expressed with BIRC5 were mainly enriched in cell cycle mitotic phase transition, double-strand break repair, and negative regulation of the cell cycle process signaling pathway. In addition, overexpression of BIRC5 protein was detected in afatinib-resistant cells by western blot, while BIRC5-expressing cells treated with BIRC5 inhibitor, YM155, were sensitive to afatinib. CONCLUSIONS: In this study, we showed that overexpression of BIRC5 resulted in resistance to afatinib in NSCLC and BIRC5-specific inhibitors may overcome the resistant phenotype, indicating that dysregulation of the apoptotic cell death pathway may be the key mechanism underlying TKI resistance in the development of NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...